
Strings

UCT Department of Computer Science
Computer Science 1015F

Aslam Safla<aslam@cs.uct.ac.za>
(thanks to Hussein Suleman <hussein@cs.uct.ac.za>)

Problem 1 Introduction
Write a program to print out the reverse of a sentence.

For example:
Computer becomes retupmoC

Use first principles - i.e., process the string character-
by-character.

Strings
Basically a sequence of characters (letters, digits,
symbols).
e.g., “howzit gaz’lum”
String literals are enclosed in single ' or double "
quotes.
Use escape characters within strings if necessary.

The data type of strings is string.
All strings are objects so have methods for various
useful functions.

How Python stores strings
Strings are sequences of characters.
A character is internally a single number representing
some symbol.
The mapping from numbers to symbols is called
Unicode - it is a standard for electronic data.
Unicode has thousands of symbols defined to cater for
all living languages!

Symbol ... A B C ... a b c ...
Unicode number ... 65 66 67 ... 97 98 99 ...

And some non-living languages

Internal data vs Input/Output
What the computer stores:

What the user sees on the screen:

72 101 108 108 111 32 87 111 114 108 100

H e l l o W o r l d

Processing strings
+ = join strings together
Example: "hello" + " " + "world"
Produces: "hello world"

* = multiply a string
Example: "hello"*2
Produces: "hellohello"

len () = length of a string
len(s)
Example: len ("hello")

Produces: 5

Indexing a string
Index is used to read a single character from a string.
We can read only - we cannot change characters.
Syntax:
a_string[i]

returns the single character in position i
Example
"Hello World"[4]

Produces: "o"
string H e l l o W o r l d
positions 0 1 2 3 4 5 6 7 8 9 10

Iterating over string characters
We can iterate over the characters of a string using for.
Example:
word = "Hello"

for a_char in word:

print (a_char*2,end="")

Output:
HHeelllloo

Alternatively, we can iterate over the position numbers:
for index in range (len (word)):

print (word[index]*2,end="")

Converting to/from numbers
ord ("a")

return the Unicode number for 1-character string "a"
chr(97)

returns the 1-character string with Unicode symbol 97

int ("1234")

returns the integer value 1234
note: we can also use eval() and float()
str (1234)

returns the string value "1234"

Problem 1
Write a program to print out the reverse of a sentence.

For example:
Computer becomes retupmoC

Use first principles - i.e., process the string character-
by-character.

Problem 2
Print out a table of Unicode numbers and
corresponding symbols.

Try the first 1000 or some user-selectable range.

Problem 3
Stylistically, in electronic communication, CAPITAL
letters are considered to be the equivalent of shouting.
However, many people consider electronic shouting to
be rude.

Write a program to convert a sentence into all
lowercase.
Use first principles - i.e., process the string character-
by-character.

Problem 4 Introduction
Suppose we have a variable containing:
“the quick brown fox jumps over the lazy
dog”.

Write a program to extract the colour of the quick fox
from the sentence using only string manipulations.
Make sure your program will work even if the string is
different, as long as there is a quick something fox in it!

Can you modify the program to change the colour to
something else?

String slicing
String slicing returns a sequence of characters from a string.
Syntax:
a_string[start:stop:step]

returns characters from start, ending before stop, step characters apart.

Notes:
if step is negative, string is processed from back to front
last character is position -1, then -2, etc.

step is optional (and you can omit the :) - assumed to be 1
start is optional - assumed to be 0 (or -1 for negative step)
stop is optional - assumed to be len (or -len-1 for negative step)
string H e l l o W o r l d
positions 0 1 2 3 4 5 6 7 8 9 10 11
neg.
positions

-
12

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

String slicing Quiz
What string is generated from the following
expressions?
Assume greet =“Hello Bob”
greet[0:3]

greet[5:9]

greet[:5]

greet[5:]

greet[:]

More string slicing examples
a = "Jabberwocky”

b = a[::2] # b = 'Jbewcy'

c = a[::-2] # c = 'ycwebJ'

d = a[0:5:2] # d = 'Jbe'

e = a[5:0:-2] # e = 'rba'

f = a[:5:1] # f = 'Jabbe'

g = a[:5:-1] # g = 'ykcow'

h = a[5::1] # h = 'rwocky'

i = a[5::-1] # i = 'rebbaJ'

j = a[5:0:-1] # 'rebba'

Objects
Objects are a special data type, including both the actual data
and functions (called methods) that operate on the data. All
Python strings are objects.
Examples of string functions/methods include:
count, find, join, lower, ...

For non-object functions, we specify the string as a parameter:
len (s)

For object function (methods), we call the function on the string
using a dot and then the function name (aka dot-notation):
s.lower ()

String methods
s.count (search)

returns integer number of search strings found within s
s.find (search)

returns position of first search string found within s
s.lower ()

returns lowercase version of s
s.replace (old, new)

returns version of s with every occurrence of old replaced with
new
s.upper()

return uppercase version of s

Problem 4
Suppose we have a variable containing:
“the quick brown fox jumps over the lazy
dog”

Write a program to extract the colour of the quick fox
from the sentence using only string manipulations.
Make sure your program will work even if the string is
different, as long as there is a quick something fox in it!

Can you modify the program to change the colour to
something else?

Problem 5
Write a program to print out the source code for a
Hello World Python program.

This is the simplest example of a program creating a
program. Think Skynet!

String Formatting
Use a format language to specify a template and
expressions to fit into the template.

General syntax:
<template string>.format (<var1>,
<var2>, …)

Python has multiple formatting approaches – this is
one!

String Formatting Examples 1
Print 2 variables in order
"{0} {1}".format ("one", "two")

'one two'

Reverse order
"{1} {0}".format ("one", "two")

'two one'

Left-aligned in fixed width
"{0:<20}".format ("one")

'one '

String Formatting Examples 2
Right-aligned in fixed width
"{0:>20}".format ("one")

' one'

Centred in fixed width
"{0:^20}".format ("one")

' one '

Floating point number rounding
"{0:5.3f}".format (1.23456789)

'1.235'

Problem 6 - 1/3
Everyone wants FREE WIFI!
But how do you find the closest hotspot?
Find Free WiFi is a service that helps you to do this.
http://www.findfreewifi.co.za/

They also have a public Web API so you can write
your own applications to find free WiFi hotspots.

Write a program to display the closest free WiFi
hotspot, using a public Web API for the data.

Problem 6 - 2/3
The public Web API is at:
http://www.findfreewifi.co.za/publicjson/locationsnear?la
t=-33.9568396&lng=18.45887&topX=1

This example latitude and longitude corresponds to
UCT Computer Science.
topX indicates how many results to return.
Sample Result:
{"message":{"Success":true,"Reason":""},"data":[{"ID":312,"Address":"Rhodes
Memorial","OpeningTime":"09:00","Name":"Rhodes Memorial Restaurant and Tea
Garden","ClosingTime":"17:00","CoLocatedService":"Restaurant","Description":"
Restaurant and Tea Garden","CredentialRequest":"Ask
Waitron","ConnectionTimeLimit":null,"BestReceptionSpot":"Outside","Connection
DataLimit":null,"Lat":-33.952440093882323,"PasswordControl":"Daily
Change","Long":18.458994844180324,"Direction":"N","DistanceFromMe":0.48931472
068021131,"FullDirection":"North","ServiceProvider":"Unknown"}]}

Problem 6 - 3/3
Use the urllib Python module to get the data.

import urllib.request

response =
urllib.request.urlopen('http://www.findfreewifi.co.za/publ
icjson/locationsnear?lat=-33.9568396&lng=18.45887&topX=1')

data = response.read()

	Strings
	Problem 1 Introduction
	Strings
	How Python stores strings
	And some non-living languages
	Internal data vs Input/Output
	Processing strings
	Indexing a string
	Iterating over string characters
	Converting to/from numbers
	Problem 1
	Problem 2
	Problem 3
	Problem 4 Introduction
	String slicing
	String slicing Quiz
	More string slicing examples
	Objects
	String methods
	Problem 4
	Problem 5
	String Formatting
	String Formatting Examples 1
	String Formatting Examples 2
	Problem 6 - 1/3
	Problem 6 - 2/3
	Problem 6 - 3/3

